Class MeanSquaredLogError
Mean squared logarithmic error (MSLE) is, as the name suggests, a variation of the Mean Squared Error. The loss is the mean over the seen data of the squared differences between the log-transformed true and predicted values, or writing it as a formula: where ŷ is the predicted value.
Inherited Members
Namespace: SiaNet.Losses
Assembly: SiaNet.dll
Syntax
public class MeanSquaredLogError : BaseLoss
Constructors
| Improve this Doc View SourceMeanSquaredLogError()
Initializes a new instance of the MeanSquaredLogError class.
Declaration
public MeanSquaredLogError()
Methods
| Improve this Doc View SourceBackward(Tensor, Tensor)
Backpropagation method to calculate gradient of the loss function
Declaration
public override Tensor Backward(Tensor preds, Tensor labels)
Parameters
Type | Name | Description |
---|---|---|
Tensor | preds | The predicted result. |
Tensor | labels | The true result. |
Returns
Type | Description |
---|---|
Tensor |
Overrides
| Improve this Doc View SourceForward(Tensor, Tensor)
Forwards the inputs and calculate the loss.
Declaration
public override Tensor Forward(Tensor preds, Tensor labels)
Parameters
Type | Name | Description |
---|---|---|
Tensor | preds | The predicted result. |
Tensor | labels | The true result. |
Returns
Type | Description |
---|---|
Tensor |