Show / Hide Table of Contents

Class MeanSquaredError

The mean squared error (MSE) or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference between the estimated values and what is estimated.

Inheritance
System.Object
BaseLoss
MeanSquaredError
Inherited Members
BaseLoss.Name
Namespace: SiaNet.Losses
Assembly: SiaNet.dll
Syntax
public class MeanSquaredError : BaseLoss

Constructors

| Improve this Doc View Source

MeanSquaredError()

Initializes a new instance of the MeanSquaredError class.

Declaration
public MeanSquaredError()

Methods

| Improve this Doc View Source

Backward(Tensor, Tensor)

Backpropagation method to calculate gradient of the loss function

Declaration
public override Tensor Backward(Tensor preds, Tensor labels)
Parameters
Type Name Description
Tensor preds

The predicted result.

Tensor labels

The true result.

Returns
Type Description
Tensor
Overrides
BaseLoss.Backward(Tensor, Tensor)
| Improve this Doc View Source

Forward(Tensor, Tensor)

Forwards the inputs and calculate the loss.

Declaration
public override Tensor Forward(Tensor preds, Tensor labels)
Parameters
Type Name Description
Tensor preds

The predicted result.

Tensor labels

The true result.

Returns
Type Description
Tensor
Overrides
BaseLoss.Forward(Tensor, Tensor)

See Also

BaseLoss
  • Improve this Doc
  • View Source
Back to top Generated by DocFX