Class LogCosh
Logarithm of the hyperbolic cosine of the prediction error.
log(cosh(x)) is approximately equal to(x** 2) / 2 for small x and to abs(x) - log(2) for large x. This means that 'logcosh' works mostly like the mean squared error, but will not be so strongly affected by the occasional wildly incorrect prediction.
Inherited Members
Namespace: SiaNet.Losses
Assembly: SiaNet.dll
Syntax
public class LogCosh : BaseLoss
Constructors
| Improve this Doc View SourceLogCosh()
Initializes a new instance of the LogCosh class.
Declaration
public LogCosh()
Methods
| Improve this Doc View SourceBackward(Tensor, Tensor)
Backpropagation method to calculate gradient of the loss function
Declaration
public override Tensor Backward(Tensor preds, Tensor labels)
Parameters
Type | Name | Description |
---|---|---|
Tensor | preds | The predicted result. |
Tensor | labels | The true result. |
Returns
Type | Description |
---|---|
Tensor |
Overrides
| Improve this Doc View SourceForward(Tensor, Tensor)
Forwards the inputs and calculate the loss.
Declaration
public override Tensor Forward(Tensor preds, Tensor labels)
Parameters
Type | Name | Description |
---|---|---|
Tensor | preds | The predicted result. |
Tensor | labels | The true result. |
Returns
Type | Description |
---|---|
Tensor |