Show / Hide Table of Contents

Class GaussianNoise

Apply additive zero-centered Gaussian noise. This is useful to mitigate overfitting(you could see it as a form of random data augmentation). Gaussian Noise(GS) is a natural choice as corruption process for real valued inputs. As it is a regularization layer, it is only active at training time.

Inheritance
System.Object
Keras
Base
BaseLayer
GaussianNoise
Implements
System.IDisposable
Inherited Members
BaseLayer.Set(BaseLayer[])
Base.Parameters
Base.None
Base.Init()
Base.ToPython()
Base.InvokeStaticMethod(Object, String, Dictionary<String, Object>)
Base.InvokeMethod(String, Dictionary<String, Object>)
Base.Item[String]
Keras.Instance
Keras.keras
Keras.keras2onnx
Keras.tfjs
Keras.Dispose()
Keras.ToTuple(Array)
Keras.ToList(Array)
System.Object.Equals(System.Object)
System.Object.Equals(System.Object, System.Object)
System.Object.GetHashCode()
System.Object.GetType()
System.Object.MemberwiseClone()
System.Object.ReferenceEquals(System.Object, System.Object)
System.Object.ToString()
Namespace: Keras.Layers
Assembly: Keras.dll
Syntax
public class GaussianNoise : BaseLayer, IDisposable

Constructors

| Improve this Doc View Source

GaussianNoise(Single)

Initializes a new instance of the GaussianNoise class.

Declaration
public GaussianNoise(float stddev)
Parameters
Type Name Description
System.Single stddev

float, standard deviation of the noise distribution.

Implements

System.IDisposable
  • Improve this Doc
  • View Source
Back to top Generated by DocFX