Show / Hide Table of Contents

Class GRU

Gated Recurrent Unit - Cho et al. 2014. There are two variants.The default one is based on 1406.1078v3 and has reset gate applied to hidden state before matrix multiplication. The other one is based on original 1406.1078v1 and has the order reversed. The second variant is compatible with CuDNNGRU (GPU-only) and allows inference on CPU.Thus it has separate biases for kernel and recurrent_kernel.Use 'reset_after'=True and recurrent_activation='sigmoid'.

Inheritance
System.Object
Keras
Base
BaseLayer
RNN
GRU
Implements
System.IDisposable
Inherited Members
BaseLayer.Set(BaseLayer[])
Base.Parameters
Base.None
Base.Init()
Base.ToPython()
Base.InvokeStaticMethod(Object, String, Dictionary<String, Object>)
Base.InvokeMethod(String, Dictionary<String, Object>)
Base.Item[String]
Keras.Instance
Keras.keras
Keras.keras2onnx
Keras.tfjs
Keras.Dispose()
Keras.ToTuple(Array)
Keras.ToList(Array)
System.Object.Equals(System.Object)
System.Object.Equals(System.Object, System.Object)
System.Object.GetHashCode()
System.Object.GetType()
System.Object.MemberwiseClone()
System.Object.ReferenceEquals(System.Object, System.Object)
System.Object.ToString()
Namespace: Keras.Layers
Assembly: Keras.dll
Syntax
public class GRU : RNN, IDisposable

Constructors

| Improve this Doc View Source

GRU(Int32, String, String, Boolean, String, String, String, String, String, String, String, String, String, String, Single, Single, Int32, Boolean, Boolean, Boolean, Boolean, Boolean, Boolean)

Initializes a new instance of the GRU class.

Declaration
public GRU(int units, string activation = "tanh", string recurrent_activation = "hard_sigmoid", bool use_bias = true, string kernel_initializer = "glorot_uniform", string recurrent_initializer = "orthogonal", string bias_initializer = "zeros", string kernel_regularizer = "", string recurrent_regularizer = "", string bias_regularizer = "", string activity_regularizer = "", string kernel_constraint = "", string recurrent_constraint = "", string bias_constraint = "", float dropout = 0F, float recurrent_dropout = 0F, int implementation = 1, bool return_sequences = false, bool return_state = false, bool go_backwards = false, bool stateful = false, bool unroll = false, bool reset_after = false)
Parameters
Type Name Description
System.Int32 units

Positive integer, dimensionality of the output space.

System.String activation

Activation function to use (see activations). Default: hyperbolic tangent (tanh). If you pass None, no activation is applied (ie. "linear" activation: a(x) = x).

System.String recurrent_activation

Activation function to use for the recurrent step (see activations). Default: hard sigmoid (hard_sigmoid). If you pass None, no activation is applied (ie. "linear" activation: a(x) = x).

System.Boolean use_bias

Boolean, whether the layer uses a bias vector.

System.String kernel_initializer

Initializer for the kernel weights matrix, used for the linear transformation of the inputs (see initializers).

System.String recurrent_initializer

Initializer for the recurrent_kernel weights matrix, used for the linear transformation of the recurrent state (see initializers).

System.String bias_initializer

Initializer for the bias vector (see initializers).

System.String kernel_regularizer

Regularizer function applied to the kernel weights matrix (see regularizer).

System.String recurrent_regularizer

Regularizer function applied to the recurrent_kernel weights matrix (see regularizer).

System.String bias_regularizer

Regularizer function applied to the bias vector (see regularizer).

System.String activity_regularizer

Regularizer function applied to the output of the layer (its "activation"). (see regularizer).

System.String kernel_constraint

Constraint function applied to the kernel weights matrix (see constraints).

System.String recurrent_constraint

Constraint function applied to the recurrent_kernel weights matrix (see constraints).

System.String bias_constraint

Constraint function applied to the bias vector (see constraints).

System.Single dropout

Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs.

System.Single recurrent_dropout

Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state.

System.Int32 implementation

Implementation mode, either 1 or 2. Mode 1 will structure its operations as a larger number of smaller dot products and additions, whereas mode 2 will batch them into fewer, larger operations. These modes will have different performance profiles on different hardware and for different applications.

System.Boolean return_sequences

Boolean. Whether to return the last output in the output sequence, or the full sequence.

System.Boolean return_state

Boolean. Whether to return the last state in addition to the output.

System.Boolean go_backwards

Boolean (default False). If True, process the input sequence backwards and return the reversed sequence.

System.Boolean stateful

Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch.

System.Boolean unroll

Boolean (default False). If True, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences.

System.Boolean reset_after

GRU convention (whether to apply reset gate after or before matrix multiplication). False = "before" (default), True = "after" (CuDNN compatible).

Implements

System.IDisposable
  • Improve this Doc
  • View Source
Back to top Generated by DocFX