Class Embedding
Turns positive integers (indexes) into dense vectors of fixed size. eg. [[4], [20]] -> [[0.25, 0.1], [0.6, -0.2]] This layer can only be used as the first layer in a model.
Implements
Inherited Members
Namespace: Keras.Layers
Assembly: Keras.dll
Syntax
public class Embedding : BaseLayer, IDisposable
Constructors
| Improve this Doc View SourceEmbedding(Int32, Int32, String, String, String, String, Boolean, Nullable<Int32>, Shape)
Initializes a new instance of the Embedding class.
Declaration
public Embedding(int input_dim, int output_dim, string embeddings_initializer = "uniform", string embeddings_regularizer = "", string activity_regularizer = "", string embeddings_constraint = "", bool mask_zero = false, int? input_length = default(int? ), Shape input_shape = null)
Parameters
Type | Name | Description |
---|---|---|
System.Int32 | input_dim | int > 0. Size of the vocabulary, i.e. maximum integer index + 1. |
System.Int32 | output_dim | int >= 0. Dimension of the dense embedding. |
System.String | embeddings_initializer | Initializer for the embeddings matrix (see initializers). |
System.String | embeddings_regularizer | Regularizer function applied to the embeddings matrix (see regularizer). |
System.String | activity_regularizer | Regularizer function applied to the output of the layer (its "activation"). (see regularizer). |
System.String | embeddings_constraint | Constraint function applied to the embeddings matrix (see constraints). |
System.Boolean | mask_zero | Whether or not the input value 0 is a special "padding" value that should be masked out. This is useful when using recurrent layers which may take variable length input. If this is True then all subsequent layers in the model need to support masking or an exception will be raised. If mask_zero is set to True, as a consequence, index 0 cannot be used in the vocabulary (input_dim should equal size of vocabulary + 1). |
System.Nullable<System.Int32> | input_length | Length of input sequences, when it is constant. This argument is required if you are going to connect Flatten then Dense layers upstream (without it, the shape of the dense outputs cannot be computed). |
Shape | input_shape | 2D tensor with shape: (batch_size, sequence_length). |