Show / Hide Table of Contents

Class Dropout

Applies Dropout to the input. Dropout consists in randomly setting a fraction rate of input units to 0 at each update during training time, which helps prevent overfitting.

Inheritance
System.Object
Keras
Base
BaseLayer
Dropout
Implements
System.IDisposable
Inherited Members
BaseLayer.Set(BaseLayer[])
Base.Parameters
Base.None
Base.Init()
Base.ToPython()
Base.InvokeStaticMethod(Object, String, Dictionary<String, Object>)
Base.InvokeMethod(String, Dictionary<String, Object>)
Base.Item[String]
Keras.Instance
Keras.keras
Keras.keras2onnx
Keras.tfjs
Keras.Dispose()
Keras.ToTuple(Array)
Keras.ToList(Array)
System.Object.Equals(System.Object)
System.Object.Equals(System.Object, System.Object)
System.Object.GetHashCode()
System.Object.GetType()
System.Object.MemberwiseClone()
System.Object.ReferenceEquals(System.Object, System.Object)
System.Object.ToString()
Namespace: Keras.Layers
Assembly: Keras.dll
Syntax
public class Dropout : BaseLayer, IDisposable

Constructors

| Improve this Doc View Source

Dropout(Double, Shape, Nullable<Int32>)

Initializes a new instance of the Dropout class.

Declaration
public Dropout(double rate, Shape noise_shape = null, int? seed = default(int? ))
Parameters
Type Name Description
System.Double rate

float between 0 and 1. Fraction of the input units to drop.

Shape noise_shape

1D integer tensor representing the shape of the binary dropout mask that will be multiplied with the input. For instance, if your inputs have shape (batch_size, timesteps, features) and you want the dropout mask to be the same for all timesteps, you can use noise_shape=(batch_size, 1, features).

System.Nullable<System.Int32> seed

The random seed integer.

Implements

System.IDisposable
  • Improve this Doc
  • View Source
Back to top Generated by DocFX