Show / Hide Table of Contents

Class ConvLSTM2D

Convolutional LSTM. It is similar to an LSTM layer, but the input transformations and recurrent transformations are both convolutional.

Inheritance
System.Object
Keras
Base
BaseLayer
RNN
ConvLSTM2D
Implements
System.IDisposable
Inherited Members
BaseLayer.Set(BaseLayer[])
Base.Parameters
Base.None
Base.Init()
Base.ToPython()
Base.InvokeStaticMethod(Object, String, Dictionary<String, Object>)
Base.InvokeMethod(String, Dictionary<String, Object>)
Base.Item[String]
Keras.Instance
Keras.keras
Keras.keras2onnx
Keras.tfjs
Keras.Dispose()
Keras.ToTuple(Array)
Keras.ToList(Array)
System.Object.Equals(System.Object)
System.Object.Equals(System.Object, System.Object)
System.Object.GetHashCode()
System.Object.GetType()
System.Object.MemberwiseClone()
System.Object.ReferenceEquals(System.Object, System.Object)
System.Object.ToString()
Namespace: Keras.Layers
Assembly: Keras.dll
Syntax
public class ConvLSTM2D : RNN, IDisposable

Constructors

| Improve this Doc View Source

ConvLSTM2D(Int32, Tuple<Int32, Int32>, Tuple<Int32, Int32>, String, String, Tuple<Int32, Int32>, String, String, Boolean, String, String, String, Boolean, String, String, String, String, String, String, String, Boolean, Boolean, Boolean, Single, Single, Shape)

Initializes a new instance of the ConvLSTM2D class.

Declaration
public ConvLSTM2D(int filters, Tuple<int, int> kernel_size, Tuple<int, int> strides = null, string padding = "valid", string data_format = "", Tuple<int, int> dilation_rate = null, string activation = "tanh", string recurrent_activation = "hard_sigmoid", bool use_bias = true, string kernel_initializer = "glorot_uniform", string recurrent_initializer = "orthogonal", string bias_initializer = "zeros", bool unit_forget_bias = true, string kernel_regularizer = "", string recurrent_regularizer = "", string bias_regularizer = "", string activity_regularizer = "", string kernel_constraint = "", string recurrent_constraint = "", string bias_constraint = "", bool return_sequences = false, bool go_backwards = false, bool stateful = false, float dropout = 0F, float recurrent_dropout = 0F, Shape input_shape = null)
Parameters
Type Name Description
System.Int32 filters

Integer, the dimensionality of the output space (i.e. the number output of filters in the convolution).

System.Tuple<System.Int32, System.Int32> kernel_size

An integer or tuple/list of n integers, specifying the dimensions of the convolution window.

System.Tuple<System.Int32, System.Int32> strides

An integer or tuple/list of n integers, specifying the strides of the convolution. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.

System.String padding

One of "valid" or "same" (case-insensitive).

System.String data_format

A string, one of "channels_last" (default) or "channels_first". The ordering of the dimensions in the inputs. "channels_last" corresponds to inputs with shape (batch, time, ..., channels) while "channels_first" corresponds to inputs with shape (batch, time, channels, ...). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last".

System.Tuple<System.Int32, System.Int32> dilation_rate

An integer or tuple/list of n integers, specifying the dilation rate to use for dilated convolution. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any strides value != 1.

System.String activation

Activation function to use (see activations). If you don't specify anything, no activation is applied (ie. "linear" activation: a(x) = x).

System.String recurrent_activation

Activation function to use for the recurrent step (see activations).

System.Boolean use_bias

Boolean, whether the layer uses a bias vector.

System.String kernel_initializer

Initializer for the kernel weights matrix, used for the linear transformation of the inputs. (see initializers).

System.String recurrent_initializer

Initializer for the recurrent_kernel weights matrix, used for the linear transformation of the recurrent state. (see initializers).

System.String bias_initializer

Initializer for the bias vector (see initializers).

System.Boolean unit_forget_bias

Boolean. If True, add 1 to the bias of the forget gate at initialization. Use in combination with bias_initializer="zeros". This is recommended in Jozefowicz et al. (2015).

System.String kernel_regularizer

Regularizer function applied to the kernel weights matrix (see regularizer).

System.String recurrent_regularizer

Regularizer function applied to the recurrent_kernel weights matrix (see regularizer).

System.String bias_regularizer

Regularizer function applied to the bias vector (see regularizer).

System.String activity_regularizer

Regularizer function applied to the output of the layer (its "activation"). (see regularizer).

System.String kernel_constraint

Constraint function applied to the kernel weights matrix (see constraints).

System.String recurrent_constraint

Constraint function applied to the recurrent_kernel weights matrix (see constraints).

System.String bias_constraint

Constraint function applied to the bias vector (see constraints).

System.Boolean return_sequences

Boolean. Whether to return the last output in the output sequence, or the full sequence.

System.Boolean go_backwards

Boolean (default False). If True, process the input sequence backwards.

System.Boolean stateful

Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch.

System.Single dropout

Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs.

System.Single recurrent_dropout

Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state.

Shape input_shape

The input shape.

Implements

System.IDisposable
  • Improve this Doc
  • View Source
Back to top Generated by DocFX