Skip to content

Semantic-kernel - with kernel-memory

Semantic Memory allows to store your data like traditional DBs, adding the ability to query it using natural language.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
using LLama.Common;
using Microsoft.SemanticKernel.Memory;
using LLamaSharp.SemanticKernel.TextEmbedding;

namespace LLama.Examples.Examples
{
    public class SemanticKernelMemory
    {
        private const string MemoryCollectionName = "SKGitHub";

        public static async Task Run()
        {
            string modelPath = UserSettings.GetModelPath();

            Console.WriteLine("This example is from: \n" +
                "https://github.com/microsoft/semantic-kernel/blob/main/dotnet/samples/KernelSyntaxExamples/Example14_SemanticMemory.cs");

            var seed = 1337u;
            // Load weights into memory
            var parameters = new ModelParams(modelPath)
            {
                Seed = seed,
                EmbeddingMode = true
            };

            using var model = LLamaWeights.LoadFromFile(parameters);
            var embedding = new LLamaEmbedder(model, parameters);

            Console.WriteLine("====================================================");
            Console.WriteLine("======== Semantic Memory (volatile, in RAM) ========");
            Console.WriteLine("====================================================");

            /* You can build your own semantic memory combining an Embedding Generator
             * with a Memory storage that supports search by similarity (ie semantic search).
             *
             * In this example we use a volatile memory, a local simulation of a vector DB.
             *
             * You can replace VolatileMemoryStore with Qdrant (see QdrantMemoryStore connector)
             * or implement your connectors for Pinecone, Vespa, Postgres + pgvector, SQLite VSS, etc.
             */

            var memory = new MemoryBuilder()
                .WithTextEmbeddingGeneration(new LLamaSharpEmbeddingGeneration(embedding))
                .WithMemoryStore(new VolatileMemoryStore())
                .Build();

            await RunExampleAsync(memory);
        }

        private static async Task RunExampleAsync(ISemanticTextMemory memory)
        {
            await StoreMemoryAsync(memory);

            await SearchMemoryAsync(memory, "How do I get started?");

            /*
            Output:

            Query: How do I get started?

            Result 1:
              URL:     : https://github.com/microsoft/semantic-kernel/blob/main/README.md
              Title    : README: Installation, getting started, and how to contribute

            Result 2:
              URL:     : https://github.com/microsoft/semantic-kernel/blob/main/samples/dotnet-jupyter-notebooks/00-getting-started.ipynb
              Title    : Jupyter notebook describing how to get started with the Semantic Kernel

            */

            await SearchMemoryAsync(memory, "Can I build a chat with SK?");

            /*
            Output:

            Query: Can I build a chat with SK?

            Result 1:
              URL:     : https://github.com/microsoft/semantic-kernel/tree/main/samples/skills/ChatSkill/ChatGPT
              Title    : Sample demonstrating how to create a chat skill interfacing with ChatGPT

            Result 2:
              URL:     : https://github.com/microsoft/semantic-kernel/blob/main/samples/apps/chat-summary-webapp-react/README.md
              Title    : README: README associated with a sample chat summary react-based webapp

            */

            await SearchMemoryAsync(memory, "Jupyter notebook");

            await SearchMemoryAsync(memory, "README: README associated with a sample chat summary react-based webapp");

            await SearchMemoryAsync(memory, "Jupyter notebook describing how to pass prompts from a file to a semantic skill or function");
        }

        private static async Task SearchMemoryAsync(ISemanticTextMemory memory, string query)
        {
            Console.WriteLine("\nQuery: " + query + "\n");

            var memories = memory.SearchAsync(MemoryCollectionName, query, limit: 10, minRelevanceScore: 0.5);

            int i = 0;
            await foreach (MemoryQueryResult result in memories)
            {
                Console.WriteLine($"Result {++i}:");
                Console.WriteLine("  URL:     : " + result.Metadata.Id);
                Console.WriteLine("  Title    : " + result.Metadata.Description);
                Console.WriteLine("  Relevance: " + result.Relevance);
                Console.WriteLine();
            }

            Console.WriteLine("----------------------");
        }

        private static async Task StoreMemoryAsync(ISemanticTextMemory memory)
        {
            /* Store some data in the semantic memory.
             *
             * When using Azure Cognitive Search the data is automatically indexed on write.
             *
             * When using the combination of VolatileStore and Embedding generation, SK takes
             * care of creating and storing the index
             */

            Console.WriteLine("\nAdding some GitHub file URLs and their descriptions to the semantic memory.");
            var githubFiles = SampleData();
            var i = 0;
            foreach (var entry in githubFiles)
            {
                var result = await memory.SaveReferenceAsync(
                    collection: MemoryCollectionName,
                    externalSourceName: "GitHub",
                    externalId: entry.Key,
                    description: entry.Value,
                    text: entry.Value);

                Console.WriteLine($"#{++i} saved.");
                Console.WriteLine(result);
            }

            Console.WriteLine("\n----------------------");
        }

        private static Dictionary<string, string> SampleData()
        {
            return new Dictionary<string, string>
            {
                ["https://github.com/microsoft/semantic-kernel/blob/main/README.md"]
                    = "README: Installation, getting started, and how to contribute",
                ["https://github.com/microsoft/semantic-kernel/blob/main/dotnet/notebooks/02-running-prompts-from-file.ipynb"]
                    = "Jupyter notebook describing how to pass prompts from a file to a semantic skill or function",
                ["https://github.com/microsoft/semantic-kernel/blob/main/dotnet/notebooks//00-getting-started.ipynb"]
                    = "Jupyter notebook describing how to get started with the Semantic Kernel",
                ["https://github.com/microsoft/semantic-kernel/tree/main/samples/skills/ChatSkill/ChatGPT"]
                    = "Sample demonstrating how to create a chat skill interfacing with ChatGPT",
                ["https://github.com/microsoft/semantic-kernel/blob/main/dotnet/src/SemanticKernel/Memory/VolatileMemoryStore.cs"]
                    = "C# class that defines a volatile embedding store",
                ["https://github.com/microsoft/semantic-kernel/blob/main/samples/dotnet/KernelHttpServer/README.md"]
                    = "README: How to set up a Semantic Kernel Service API using Azure Function Runtime v4",
                ["https://github.com/microsoft/semantic-kernel/blob/main/samples/apps/chat-summary-webapp-react/README.md"]
                    = "README: README associated with a sample chat summary react-based webapp",
            };
        }
    }
}